Algebral	
9:40 A.M.	36 km
$54 \mathrm{mi} / \mathrm{hr}$	400 m
$9 \mathrm{mi} / \mathrm{hr}$	32 mi
2800 mi	$\text { Lap 1: } 48 \mathrm{sec}$ Lap 2: 51sec

2) At 8:00 A.M. the Smiths left a campground, driving at $48 \mathrm{mi} / \mathrm{h}$. At 8:20 A.M. the Garcias left the same campground and followed the same route, driving at $60 \mathrm{mi} / \mathrm{h}$. At what time did they overtake the Smiths?

3) Jenny had driven for 2 h at a constant speed when road repairs forced her to reduce her speed by $10 \mathrm{mi} / \mathrm{h}$ for the remaining 1 h or her 152 mi trip. Find her original speed.

4) It takes a plane 40 min longer to fly from Boston to Los Angeles at
$525 \mathrm{mi} / \mathrm{h}$ than it does to return at $600 \mathrm{mi} / \mathrm{h}$. How far apart are the cities?
Let $x=$ returntime
$x+\frac{2}{3}=$ time there
Since it is miles per hour, we can't use minutes. 40 minutes is $2 / 3$ hour (40/60).

We get $42 / 3$ for x which is hours. The answer to Let $x=$ time back
the problem asks for the distance between the The trip there is equal to the trip back.

10) It took Cindy 2 h to bike from Abbott to Benson at a constant speed. The return trip took only 1.5 h because she increased her speed by $6 \mathrm{~km} / \mathrm{h}$. How far apart are Abbott and Benson?

12) Jan can run at $7.5 \mathrm{~m} / \mathrm{s}$ and Mary at $8.0 \mathrm{~m} / \mathrm{s}$. On a race track, Jan is given a 25 m head start, and the race ends in a tie. How long is the track?

Jan	$\frac{7.5 \mathrm{~m}}{\mathrm{sec}}$	$\times \mathrm{sec}$	(7.5x)m
Masy	$\frac{8.0 \mathrm{~m}}{\mathrm{sec}}$	\times sec	(8x) m

start Finish.

Let $x=$ time of bothin sec.

$7.5 x+25=8 x$
ced to and hac a head start, we 25 meters to Jan's distance to make it equal to Mary's.
16) Jamie ran two laps around a track in 99 s . How long did it take him to run each lap if he ran the first lap at $8.5 \mathrm{~m} / \mathrm{s}$ and the second at $8.0 \mathrm{~m} / \mathrm{s}$.

Let $x=$ time of Lap 1 in sec
Anytime we split a total into two
unknown parts, the first is always x and
$99-x=$ time of lap 2 in sec
the second is always total $-x$. Thus 1
one is x sec and lap two is $99-x$ sed
$8.5 x=8(99-x)$
The distance of each lap is equal.
14) An ultralight plane had been flying for 40 min when a change of wind direction doubled its ground speed. The entire trip of 160 mi took 2 h . How far did the plane travel during the first 40 min ?

	r	t	d
First, we change 40 minutes to $2 / 3$ hours, because the whole slow trip took 2 hours.	$\frac{\times \mathrm{m}}{\mathrm{hr}}$	$\frac{2}{3}$ hrs	$\left(\frac{2}{3} x\right) \mathrm{mi}$
	$\frac{2 \times m i}{h r}$	$\frac{4}{3}$ hes	$\underline{4}+\frac{4}{3}(2 x) \mathrm{mi}$
Then the remainder of the trip is 2 hours minus 40 minutes, or 2 hours minus $2 / 3 \mathrm{hr}$, which is $11 / 3$ hours. Make improper to $4 / 3$ hours.	et x	a speed x) $=160$	Both legs of the trip must add to the total o 160 mi .

